Journal of Computational Physié$1,287-311 (2000) ®
]
doi:10.1006/jcph.2000.6505, available online at http://www.idealibrary.col DE &l.

Acceleration of Contour Dynamics Simulations
with a Hierarchical-Element Method

P. W. C. VosbeeK; -1 H. J. H. Clercxj and R. M. M. Mattheif

*Scientific Computing Group, Department of Mathematics and Computing Sci&haie, Dynamics
Laboratory, Department of Applied Physics, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
E-mail: vosbeek@knmi.nl

Received July 7, 1999; revised March 8, 2000

This paper presents a so-callagkrarchical-element methothat can be used
to accelerate complex contour dynamics simulations. The method is based on a
modified fast multipole method where the multipole approximations are replaced by
Poisson integrals. In this paper, attention is being paid to the theoretical derivation
of the method. Furthermore, numerical and implementation aspects are considered.
Various numerical simulations show that the speed-up of the method is significant,
while the accuracy of the results is not being influence@. 2000 Academic Press
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1. INTRODUCTION

In this paper a method to acceleratsmtour dynamicsimulations is discussed. Contour
dynamics is a powerful method for simulating vortices in two-dimensional flows of &
incompressible, inviscid fluid. The method and many improvements thereof have b
brought to full growth by the pioneering work of Dritschel [7, 8].

Contour dynamics is based on the observation that the evolution of a patch of unifc
vorticity is fully determined by the evolution of its boundary contour. The method is ne
limited to just one region of uniform vorticity; indeed, several contours can be nested
order to obtain an approximation of a patch of distributed vorticity [7, 8, 23].

In contour dynamics simulations, the contours are approximated by a finite but adjusts
number of nodes. The velocity field at a certain point in space depends on the positiol
each node. To determine the evolution of the contours, the velocity field is computec
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every node on the contours thus requiring oré&N?) operations wheré\ is the total
number of nodes.

The initial number of nodes on a contour is usually not large enough to approximate
contour sufficiently accurate during a whole simulation. Therefore nodes are added t
contour where necessary and they are removed from regions where redundant. How
in many situations the total number of nodes increases rapidly during a computation .
as a result, the calculations become computationally very expensive due (M@
complexity of the algorithm.

One can imagine that in certain complex situations where high numbers of nodes
required, the simulations become computationally too expensive to carry them out wit
a reasonable amount of time. In order to be able to perform such computationally exp
sive calculations, it is necessary to accelerate the method. In the past, methods have
developed to accelerate contour dynamics already, for example, moment accelerated
tour surgery by Dritschel [9, 10] and a fast adaptive vortex method by Buttke [5]. In bo
methods, contour dynamics is combined with a fast multipole technique [11], however,
very different ways. In the first method, which was developed for many vortex simulatior
vortices far away from the evaluation point are replaced by multipole expansions in or
to reduce the computation time of the velocity calculations. In the second method [5]
similar effect is achieved by calculating the velocity at a given point by a fast summati
of the contributions of vortex elements inside the patch. Vortex elements of different si:
are used to approximate the patch accurately.

The method presented in this paper combines a modified fast multipole methoc
so-calledhierarchical-element methoavith contour dynamics. This hierarchical-element
method is based on the one developed by Anderson [1] which actually is a fast multip
method with the multipole expansions replaced by Poisson integrals. The advantage of
approach is that the method can be applied to a large variety of flow problems like,
example, many vortex calculations and complex flow problems of only few vortices. Al
more geophysically relevant flow problems like, for example, the evolution of vortices in tl
presence of non-uniform background vorticity (where contours are also necessary out
the vortices [20]) can be studied using this method. An additional advantage is that
method is fairly easy to generalise to three dimensions as discussed by Anderson [1].

The remainder of the paper is organised as follows. In the next section, the cont
dynamics method as used throughout this paper is discussed briefly. Section 3 gives a ¢
review of the hierarchical-element methods and in particular the approach by Anderson
Subsequently, Sections 4 and 5 discuss the necessary adaptations to Anderson’s m
that make this particular hierarchical-element method suitable for application to cont
dynamics simulations. In Section 6, the accuracy and computational efficiency of the r
method is illustrated by some numerical examples. Finally, in Section 7, some conclusi
and recommendations are given.

2. CONTOUR DYNAMICS

The equations of motion for a flow of an incompressible, inviscid fluid, are given k
conservation of mass, i.e.,

(V,u) =0, 1)
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whereu is the velocity vector, and the Euler equation, i.e.,

Du odu 1
—_— = — uvVu=-—--Vp, 2
ot = TV SVP 2
with p the pressure and the density.
For a 2D flow, a stream functioyi can be introduced because of (1),

_ oy
u= Ty
{ y ©

The vorticity vectorw, which is defined asy :=V x u, only has a vertical component in
this case, i.ew = we,. By taking the curl of the Euler equation (2), the equations of motiol
can be written in terms of the stream functiah) @nd the vorticity &) and take the form

Dw w
ﬁ=¥+(u,Vw)=O, (4)
VY = —w. (5)

The first equation expresses conservation of vorticity of a fluid particle. The solution of 1
second, the Poisson equation, in an infinite domain is formally given by

X, t) = —// oX,1)G(Xx; x) dx dy, (6)
RZ

whereG(x; X') = %Innx —X||,i.e., Green’s function of the Laplace operator for an infinite
domain, and = (x, y). The norm| - || is defined byj|x|| := \/X2 + y?, for eachx € R?.

For contour dynamics, an initially continuous distribution of vorticitgx, O) is replaced
by a piecewise uniform distributian(X, 0) given by

B0 =Y @,  X€GnO\Gm1(0), M=0,..., M, ™
1=0

where the region§m(0) are nestedgm 1(0) C Gm(0), Go(0) =R?, andGy1(0) =4, i.e.,
Gm+1(0) is empty. Unless specified otherwisey is considered to be zero. They, 1,
m=0,..., M —1, can be thought of as the jump in vorticity when moving from re-
gion G (0)\Gm11(0) t0 Gim11(0)\Gmy2(0), With Gy (0)\Gm1(0) the regionGm (0) without
Gm+1(0). Figure 1 shows an example of regions of uniform vortigiy, Fig. 2 shows the
corresponding piecewise-uniform distribution of vorticity.

Conservation of vorticity (4) now ensures that the piecewise-uniform distribution r
mains piecewise uniform throughout time. Furthermore, it can be derived that the velo
field u(x, t), anywhere in the flow, and in particular on the contaCiswhereaix, t) is
discontinuous, can be determined by the computation of contour integrals [7, 8, 20, 22,

M
ux,t) = — Zwm]{ G(x; X)dx. (8)
1 C(®)
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FIG. 1. An arbitrary patch of piecewise-uniform vorticity distribution. The regigis are nested, i.e.,
Omi1 CGmform=0,....,M —1.

The contour integrals in (8) have to be computed numerically and the contours theref
have to be approximated by a finite, but adjustable, number of nodes. Between two ¢
sequent nodes on a contour, linear interpolation is used to determine the contour inte
in (8). The addition and removal of nodes is based on the local curvature of the conto
minimum and maximum distance between two successive nodes, and quasi-uniformit
the distribution of the nodes [20, 22].

The evolution of the contours can be found by integrating the velocities, determined at
nodes on the contours, over a small time step. The time integration is carried out using
second-order (symplectic) midpoint rule [19]. The reason for choosing this scheme is t
it conserves quantities like the area and circulation of the regions of uniform vorticity bet
than ordinary integration methods [20, 22].

3. HIERARCHICAL-ELEMENT METHODS

In this section a hierarchical-element method (HEM) as described by Anderson [1]
discussed. The method is based on the fast multipole technique developed by Greengar
Rokhlin [11] but does not employ multipoles themselves. Instead, approximations base
Poisson’s formula are used.

The fast multipole method (FMM) itself has been developed in order to accelerate cc
putations ofN-body interactions. For example, givéhcharged particles at positiong
with strengthe,, n=1, ..., N, the potentiald at every particle has to be calculated. Here,

Wo

FIG. 2. A cross-section (along the dashed line in Fig. 1) of the piecewise-uniform vorticity profile approx
mating the continuous profile (dashed line).
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@ is a solution of

N
V20 = " knd(X — Xn),

n=1
whered (x) is Dirac’s delta function. The solution is given by

N

00 = Y 2 Inlx = Xall. ©)

n=1

Clearly, the evaluation ab at every particle require®(N?) operations. The FMM reduces
the operation count t&(N In(N)) or evenO(N). Note that there is a strong resemblance
with point vortices: the charged particles can be replaced by point vortices and in t
case,® should be replaced by the stream functibnThe FMM is thus very suitable for
accelerating (many) point vortex interactions as well.

The FMM basically consists of two parts. The first part is based on the concept
combining a large number of particles into a single computational element. When a clu:
of particles is far away from a certain point at which the potential has to be calculated,
potential of the cluster is approximated by the potential induced by a single computatic
element inside the cluster. To this end a multipole expansion [11] around the zgotra
disk containing the cluster of particles is used.

The second part of the FMM concerns the organisation of the computations in suc
way that the technique of combining particles is efficient and does not lead to inaccurac
For example, when combining particles into single elements, the more widely distribu
in space the particles of a given cluster are, the more inaccurate the multipole expan
becomes for a fixed ordét of the multipole and a fixed poirztof evaluation. However, if
the evaluation poirt is moved away from the centre of the digk then the accuracy of the
approximation improves. So, if a certain degree of accuracy is desired, the potential sh
be approximated by a hierarchy of multipole expansions [1]. Far away from the evaluat
point, particles are combined over large regions; particles closer to the evaluation point
combined over smaller regions as indicated in Fig. 3. This figure shows an example

FIG.3. Ahierarchical clustering of particles which is used to create a multipole approximation to the potent
at a point in the dark grey box (adapted from [1]).
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hierarchical clustering of particles which is used to create a multipole approximation to
potential at a point in the dark grey box. The potential induced by particles in the wh
boxes is combined into multipole approximations; the potential induced by particles in 1
light grey and dark grey boxes is computed using the direct interaction formula.

In the HEM described by Anderson, instead of multipole expansions, Poisson’s form
is used. According to Poisson’s integral the potential outside a disk with radiesitaining
the particlex, forn=ng, ..., ny, is given by

. 0) = k| L P & o.0)dy, f 10
(r,rp)—xn(r)+g/o (P(a, )—fcn(a))go(;,w, ) . orr >a, (10)

where
1—Q2
L0, 0) = , 11
Go(0: ¢, V) 1 20089 —9) 1 o2 (11)
and
1 &
ZZZK}].
n=ngp

The coordinate§, ¢) indicate the position in polar coordinates of the evaluation point wit|
respect to the centre of the disk [15].

An advantage of this approach is that also collections of sources which are more gen
than point charges or point vortices, such as given areas of certain charge distribut
or vorticity distributions, can be treated. The application of multipole expansions witho
using the Poisson’s integral approach might be very difficult or even impossible for the
particular problems.

The integral in (10) can be determined numerically. Problems arise when integrat
it straightforwardly by the trapezoidal rule; however, by modifying the kemef the
Poisson integral appropriately, the numerical integration appears to be super-conver
(see Subsection 4.2 and the paper by Anderson [1]).

The numerical approximation of the Poisson integral (10) is referred to by Anderson
anouter-ring approximationin a similar way a so-callethner-ring approximatiorcan be
defined, which is the numerical approximation of

1 [ r
D(r, @) = g/ d(a, ﬁ)go(a, 0, ﬁ) des, forr < a. (12)
0

This inner-ring approximation represents the potential inside a ring with radius
In the following, the evaluation of the potential at the integration points of the outer-rir
by means of the outer-ring approximation or by direct summation of the appropriate ter
in (9) is referred to as theonstruction of the outer-ringnd likewise for the inner-ring.
Now, following Anderson, the method proceeds as follows. First, a square domain
chosen which encloses all particles. Furthermore, a finest level of refinémisrthosen
(a way to do this is discussed later). At this finest leyelthe domain is divided into
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a) b)

FIG. 4. Construction of an outer-ring at the finest level using the direct interaction formula (a) and at coar
levels from a “child” box at the previous finer level (b). Particles are denoted with small circles; integration poi
on the ring with black dots. The boxes indicated with dashed lines in (b) contribute in a similar way as the |
drawn with a solid line (adapted from [1]).

21 x 2'' square boxe$Similarly, at the coarser levels the domain contains 2' boxes,
I=2,...,1¢. Like the FMM, this method also consists of two parts.

In the first part, outer-rings are constructed at each level, starting with the finest le
Here, a ring of radius equal to the box width is chosen around each box. The centre
the ring is located at the centre of the box. Then, at the outer-ring, the potential due to
particles inside the box is determined (see also Fig. 4a) by means of direct summatio
the appropriate terms in (9), i.e., only the terms concerning the particles inside the box
taken into account. After finishing the finest level, one proceeds to the coarser level wt
the outer-rings (again with radius equal to the box size and with centre located at the ce
of the box) are constructed from the finer level by combining the contributions of the fc
“child” boxes inside the coarser box by means of the outer-ring approximation. In Fig. 4l
is shown how the contribution to the outer-ring of a “child” box (solid lines) is determine
the other three boxes (dashed lines) contribute similarly. This procedure can be repeat
each coarser level. At the end of the first part, outer-rings have been constructed for ¢
box at every level.

In the second part of the algorithm, the contributions of the outer-rings are organi
in a rather smart way. To this end, the concept of beiefl separatedl, 11] is used. If
the boxes at a certain leviehre identified by a paii, j),i, j=1,..., 2, with box (1, 1)
being the box at the bottom left and b, 2') the box at the top right of the domain,
a box(iy, j1) is well separatedrom box (i», j2) with distanceD, if the maximum of the
difference between their indices nmig@ix —iz|, | j1 — j2|) is larger tharD. At a certain level,
this second part consists of constructing inner-rings for each box which are used to repre
the contributions to the potential from two sources.

Thefirst source is the inner-ring associated with the parent box at the previous coarser |
(see left part of Fig. 5). This inner-ring represents the contributions of the grey boxes in
left part of Fig. 5. The second source is the contribution from all the outer-rings of the bo

2The method thus requires at least 2 2'f operations and memory storage. This makes the method mor
difficult to use for large values of. However, currently parallelisation of the algorithm is being worked on which
will take care of this problem.
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FIG. 5. Two sources contribute to the inner-rings: the inner-rings of the parent box at the previous coar
level (left) and outer-rings of boxes which are well separated from the current box at the current level but
parents of those boxes are not well separated from the parent box of the current box (right) (adapted from [1

that are well separated from the given box (with distaBce 1) and are contained within
boxes at the previous coarser level that are not well separated from the parent box (
boxes in right part of Fig. 5). The radius of the ring in the inner-ring approximations is tak
equal to half the box width. This procedure is carried out for all levelsZ, | ;). However,

at levell =2 (the coarsest level), only contributions of the second source contribute to
inner-rings of that level, while at the finest levéK 1), the inner-rings are constructed
from the inner-rings of the parents only.

Atthe end of this part, the potential at any given evaluation point is obtained by computi
the potential of the inner-ring approximation associated with the finest level box where
point is residing. This potential is then added to the potential induced by the particles
those neighbouring finest level boxes that are not well separated from the given evalus
point box and which is obtained by using the direct interaction formula. A pseudo-code
the method can be found in the paper by Anderson [1] and in [20].

In the foregoing, the number of refinemehtswvas fixed. However, it should of course
be chosen in such a way that the method is the most efficient. It may be clear that
value ofl ; depends on the number of particles in the domain and also on the way they
distributed over the domain. Since in practice the particles are not uniformly distributed
space, Anderson suggests estimating a priori the necessary computation time for se
values of s by counting the operations required: execute the hierarchical method but inst
of performing all operations required, just update some counters. The counter increm
are based on the density of particles in each box and are a measure for the computat
time necessary to carry out the specific computational tasks. Based on this procedure
time, necessary for the work required for different levels of refinement, is estimated, ¢
the level with the least amount of anticipated time is selected. This suggestion appeal
work fine in practice.

As mentioned earlier, this variant of the HEM can also be used for problems with given
eas of charge distribution or vorticity distribution instead of point charges or point vortice
respectively. This makes the method suitable for accelerating contour dynamics sim
tions dealing with piecewise-uniform vorticity distributions. In the next two sections, th
necessary adaptations of Anderson’s method are discussed.
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4. THE POISSON INTEGRALS

To accelerate the contour dynamics method with the HEM discussed in the previ
section, two aspects related to the implementation of the HEM need to be changed.
first change concerns the Poisson integrals. For contour dynamics, the velocities at
nodes are needed instead of the stream function. Therefore, Poisson integrals as in
and (12) have to be derived both for the radial component and the azimuthal compor
of the velocity. It would also be possible to use the Poisson integrals (10) and (12)
calculate the stream function at the nodes, but then the velocities at the nodes ha\
be determined numerically, introducing additional errors. Therefore, analytically deriv
Poisson integrals for the velocity components are to be preferred. The second modifice
concerns the piecewise-uniform vorticity distribution instead of point vortices, which affec
both the Poisson integrals and the construction of the outer-rings at the finest levels.

In Subsection 4.1, the derivation of the Poisson integrals of the outer-rings is discus:
whereas the numerical calculation is discussed in Subsection 4.2. The derivation and
merical calculation of the Poisson integrals of the inner-rings are completely similar to th
of the outer-rings and will therefore not be discussed separately here. The constructic
outer-rings at the finest level is discussed in Section 5.

4.1. Theoretical derivation. Consider a stream functiogr that satisfies the Laplace
equation, i.e.,

Vi = 4 = — =0, 13
v r8r+8r2+r2<p2 (13)
outside a disk of radiua containing an area of piecewise-uniform vorticityr, ) = wm,
(r,9) €Gm, m=my, ..., M. The regionsj, are nested as in (7). The radial and azimutha
velocity u, andu,, are related tay by
U (. ) = 1oy
r 9 (p - r a(p )
oy
u,(r,p) = ———.
o(r, @) ar

For the behaviour of the radial and azimuthal velocity at infinity, it can easily be shov
that

ru = O@1/r), forr — oo, (14)
ru, =k + O(/r), forr — oo, (15)

wherex = miml (wmAm)/(2r) with Ay, the area ofj, i.e.,« is equal to the circulation

I inside the the disk divided by2 Furthermore, it can be shown that beth andru,
satisfy the Laplace equation outside the disk, i.e.rfera, V2(ru,) = V2(ru,) = 0.
Now consider the following, rather standard, exterior boundary value problem,

Vv2f(r, ¢) =0, r>a 0<¢ <2r,
fr.eo) = f@@ ¢), r=a, 0<¢ < 2m,
f(r,0) = f(r, 2n), r>a,

f(r, o) =0(), r— o00,0<¢ < 2n.

(16)
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This problem has a unique solution, given by

1 2
f(r ) = Z/o f(a, ) go(?,(p, 19) do, forr > a, (17)

with go as defined in (11). The behaviour bfat infinity follows from rearrangingo,

f(r,<p)=2i/:ﬂf(a,19) (1+g(?,<p,0>)dﬁ, forr > a,

with
cosy —¥) —¢
k] k] 19 = 2 P} l
g(o, ¢, ) Q1—2Qcos(go—ﬁ)+g2 (18)
so that
1 2
f(f,¢)=f/ f(a,®)d9 +0@Q/r), forr — oo.
21 Jo
Itis clear from this thatf = O(1/r) at infinity if and only if
2
/ f(a,v)dy =0 (19)
0
and in that casef is given by
1 [ a
f(r,p) = Z/o f(a, v) g(F, @, 29) dy, forr > a. (20)

Now the Poisson integrals for the radial and azimuthal velocity components easily foll
from the above theory by replacirigby ru, andru, — «, respectively, since bottu, and
ru, — « satisfy (19) according to

2 2 9 a,
/ au (a, <p)d<0=/ ydgo:O,
0 0 2

and

2
/ au,(@a, ¢)dyp =T = 27«
0

Thus, the Poisson integrals for the radial and azimuthal velocity components are given

a [ a
ur(r, @) = 20t /0 U (a, 19)9(?» @, 19) dd, (21)
Kk a [& K a

with x = Zmiml(wmAm)/(Zn), An being the area of,, andg defined by (18).
Note that the ternix /a) g(2, ¢, ©) in (22) does not contribute to the integral since

/0271 g(?,w, 9)dv =0
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4.2. Numerical integration. The numerical integration of the Poisson integrals (21
and (22) appears to be inaccurate when integrating straightforwardly by a trapezoidal 1
similar to the Poisson integral (10). In this section, the source of this inaccuracy is discus
and a solution (similar to that of Anderson [1]) to the problem is presented; the integrat
turns out to be super-convergent. For the sake of simplicity, the analysis is performed
the functionf being the solution of the boundary-value problem (16) and satisfying (19

The functiong as defined in (18) can be expanded in a Fourier series

cosy —9)—o
9 9. 0) = 2Ql —20cogp — ¥) + 02
oo
= Z oM@ forp < 1. (23)
n=—oo0,n#0

Substituting this in expression (20) férand exchanging summation and integration, yield:

f(r, o) = i cn(?>lnl e forr > a,

n=—00,n#0

where
1 27 )
Ch = —/ f(a, 9)e " dv.
2 0

Note that requirement (19) is equivalentgp= 0. From the foregoing it follows that nu-
merical calculation off is actually equivalent to the numerical calculation of the Fourie
coefficientsc,. Now approximate these coefficients usin ooint trapezoidal rule, where
K is an odd number, i.eK =2L + 1, L € N. The approximatiorr, of ¢, is then given by

K
1 .
Fo=—> fagge
n Kkzl @, %) ’

with 9 = 27k/K. Evidently, when applying the same trapezoidal rule, the approximatic
Tk (fg) of f is then given by

[e¢]

(fgy= >  F (§>|n| e, forr > a.

n=—o00,n#0

The row{F,}, n=—L, ..., L, n#0, is thediscrete Fourier transfornfDFT) of the row
{f(a, %)}, k=1,..., K andF, is periodic inn with periodK =2L + 1; see Briggs and
Emden Henson [4]. If (a, ) is a periodic function oft and f (P is bounded and piecewise
monotone, then [4]

Ci(p)
|Fn—cn|§Kle1, forn=—-L,...,L, n#0, (24)
and furthermore

forn=-L,...,L, n#0. (25)
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The constant€; andC; are independent from, but they do depend op.
Now approximate the functiog(o, ¢, ©) by a functiong, (o, ¢, ) defined as

L

gL(Qv @, 0) = Z anlein(wiﬂ), for o< 1,
n=—L,n#0

i.e., the firstL Fourier modes ofj only. Then an approximatioﬁ of f is given by
. L ENG
n=—L,n#0
Numerical integration with the samé-point trapezoidal rule as before yields
L
Tk (fou) = Z F(g)m‘ei”“) forr > a
K L n r s .
n=-—L,n#0
The error caused by numerical integration can now be estimated using (24),

L

> @ (F)" e

1, 0) — T (fgu)| =

n=—L,n£0
Cip) <~ (ay _ Cup),, (a
= KpH 2 (F) = KP+1ZL(F)
n=—L,n#0
Ci(p) (a
= ke (F) (26)
With the estimate (25) fot,, it follows that
. ayin . =, 2C a\n
1foo) - fr.ol=| > Cn(F) évl< > mfilp) (F)
n>L+1 n=L+1
2C,(p) ray\L+l
=y (F) . @7)
Combination of (26) and (27) yields the estimate
C a 2C a\ L+t
Fr0) = TeCTanl = Sk (2) + 222 ()7 (28)

In a similar way, an estimate can be found fé«r, ¢) — Tk (fg)|. Since

(o) - Tt = fr9) —Te(tan = Y (3) (Foe™ + Fope™™),

n=L+1

it follows with (28) that

C:((E) (?) n ZEZL(FE)) (:_1>L+1+

> () me.

In[>L+1

(o) — Tk (fg)l =
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The last term on the right-hand side can be estimated using the periodi€ity ®fibstitute
n=n"+Q2L+1l=n"+Kl,forn=—L,...,Landl =1, 2,3,.... Then, after omitting
the primes, it follows that

Z (a) _XL: ij;( ) (Fnein<p+iKIw+ F_ e ine-ikley

Inj>L+1 -

= i (?) F,e"? (aelw)K

=L 1- (2e¢)"
L aq—ip\K
A e e (26)
Y E ing r ]
+n;|_ (r) n€ 1— (r@e*iw)K

This equation shows that the infinite number of mode$ oéduces to onl)K modes when
the integral is integrated numerically and, moreover, the higher modes are represe
falsely by lower modes (aliasing). Now inequalities (24) and (25) can be used to find
estimate for,, N #£0,

Ci(p  Cap
- Kptl np+1 :

[Fnl < |Fn—Cal +Cq| <

Forn=0 it simply follows fromcy = 0 that

Ci(p)
= Kpi®

[Fol <

With these estimates foF,|, it now follows that

Z (g)\nl F.e™| < 2C.(p) (a/r)-t1  4C,(p) (a/r)L+1K’
DS KP 1—(a/r)  pLP 1-—(a/r)

resulting in a final estimate for the integration error according to

Ci(p) sa 2Cy(p) ray\L+1
KP (F)+ pLP (F)

2Ci(p) (/)" 4Cy(p) (a/r)ttt
KP 1—(a/r)  pLP 1—(a/r)K’

[f(r, o) — T (fg)| <

(29)

The errorsE, andE,, in the velocity components can now be obtained by simply replacin
the functionf in the estimates and (28) and (29) fay andru, — «, respectively. In the
case of an unmodified kernel, it then follows that

() (_)2 2C2(p) (_)L+2 2Ci(p) (@/)*2  4Cy(p) (a/n)-*?
"= Kp \r pLP \r KP 1—(a/r) pLP 1—(a/r)K’

while in the case of the modified kernel

B DR O

For E,, similar estimates are valid, yet with different consta@tsandC,.
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b)

FIG. 6. The magnitude of the errd, (a) andE, (b). The dashed lines indicate the magnitude of the errors
in the Poisson integrals when applying the trapezoidal rule to the original kernegj)j.the solid lines indicate
the magnitude of the errors when applying the trapezoidal rule to the modified kerng, (j.e.,

The estimates for the unmodified kernel are larger than the estimates in case of an
ified kernel. Moreover, the former estimates are unbounded whea, while the latter
are bounded. This suggests that usgpginstead ofg will reveal more accurate results.
In Fig. 6 the magnitude of the errois; (left) and E, (right) are plotted both for an
unmodified kernel (dashed lines) and for a modified kernel (solid lines). The test prc
lem is the same problem Anderson used [1], i.e., a ring of radia® centred around
(r, ) = (0, 0) and a particle of strength=1 located afr, ¢) = (% 2, t/3). In the fig-
ure, the magnitude of the errors is plotted as a function of the distance to the centre
the ring. The evaluation points are all located at the posithaxis (¢ = 0). Indeed,
at evaluation points close to the ring the modified kernels give better results than
unmodified kernels. The behaviour of the error agrees very well with the predicted |
haviour. The cusps that are present in the figure are caused by a change in sign o
error.

5. CONSTRUCTION OF FINEST LEVEL OUTER-RINGS

The last part of the method consists of constructing outer-rings at the finest level. Attt
level, the contributions of the patches of uniform vorticity in each box have to be determir
atthe outer-rings. Consider the arbitrary piecewise-uniform vorticity distribution as depict
in Fig. 7. In the right part of the figure, some regighg m=0, ..., M, of uniform vorticity
wnm are shown. Regiofy is equal to the domain on which the HEM is applied (containinc
all regions of vorticity) andvg is assumed to be zero. In the left part of the figure, the gri
lines of the finest level are indicated with dashed lines. The contribution of the vortici
distribution inside the grey bax to the velocity at the integration points on the outer-ring
of that box is now given by

M
Wm
ux,t)y=-— Z — j{
me1 27T 9

In|lx — x| dx/,
(Gmlb)

(30)
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FIG. 7. The finestlevel grid (dotted lines in the left part) with a piecewise uniform vorticity distribution. The
contours where jumps discontinuously are drawn with solid lines. On the right, an enlarged view of the gre
shaded box in the left part.

whereGnlp is the region oG, restricted to boxb. In the example as shown in Fig. 7, this
results in

1
ux,t) = —— {wmsy{ +0)m—2f
2n CoC1C2C5Co PsCoC1CoPsPs

+ wmflf +0)m% :| Injjx — x| dx’,
PsCoC1P3Ps P1C1 PPy

with the pointsCy, ..., Cz andP4, ..., Ps as depicted in the right part of the figure. Thus,
for the construction of the finest level outer-ring of a certain box it is necessary to determ
the contributions from two different sources: the first source being the parts of the contc
inside the box and the second source being the correct parts of the box boundarie
practice, it turns out to be convenient to carry out this procedure for all boxes per contc

The contributions of the first source can be determined by moving along the contou
positive direction, i.e., counterclockwise, and determining for each node in which bo»
resides. The number of the box in which the node is situated is stored in such a way tha
each node it is clear in which box its preceding node is situated. If the box number of
current node differs from that of its predecessor, the part of the contour between those
nodes crosses at least one grid line and the current segment contributes to the outer-ri
at least two boxes. After the intersection points with those grid lines are determined,
contributions to the various boxes can be determined. If the box number does not differ fi
that of the preceding node, the whole line segment is located in one box and the contribu
of the segment to the outer-ring of that box (and contour nodes in neighbouring®poxe
can be determined. Upon treating all nodes on the contour this way, the contributions of
first source have been determined.

3 These contributions are needed in the last sweep of the HEM (see Section 3), but in the contour dynamics
it is more convenient to determine them already at this stage of the method. This way, the contours only ne
be traversed once.
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;G

FIG.8. Example of abox thatis crossed by a contour more than once. The grey shaded regions are the re
that contribute to the outer-ring. The parts of the contours and of the box boundaries that have to be taken
account are drawn with solid lines.

The determination of contributions of the second source is more complex. One prob!
encountered is the possibility of the contour crossing a box more than once. The inter:
tion points of the contour with the box boundaries have already been determined in
previous part, but the sequence in which they have been found is not of any use. Thi
illustrated by Fig. 8. Here, the intersection poifsare, for example, found in the order
of increasing index. It is clear from this figure that the parts of the box boundaries the
have to be taken into account (solid lines) should always be walked along in positive
rection, since the contour itself is also walked along in that direction. Thus, it is necess
to sort the array of intersection points of a given box in such a way that (after sortir
the intersection points are encountered successively in positive direction when mov
through that array. So, in the case of Fig. 8 the sequence of intersection points shoul
P7, Ps, P1, P4, P3, P2, Ps, P1g, Py, Pg, after the sorting algorithm has been applied to the
original sequence. A heapsort algorithm [6] is used for this purpose.

Another feature that is clear from Fig. 8 is that if the contour moves inward into tt
box, it has to move outward again, since it is closed. Therefore, the number of intersec
points for a given box is always an even number. Moreover, it appears that the parts of
box boundaries that have to be taken into account are the parts between two neighbot
intersection points (not necessarily lying on the same box side) of which at the first 1
contour is moving outward and at the next (in positive direction) the contour is movir
inward again. By giving each intersection point a flagifl§ indicating whether the contour
is moving inward §side> 0) or outward §side< 0) at that point, it can be determined
between which two subsequent intersection points a box boundary part, that shoulc
accounted for, is situated. Since it is not a priori clear how many and which corners of
boundary are lying between such two subsequent intersection points, it is convenier
identify each side and each corner with a number (see Fig. 8). In this way, an intersec
point can be assigned an integer value indicating the side it is situated on.
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This value can be combined with the flag mentioned abesetd P, b) = +k where
k is the number of the side of bdxwhereP, is lying on and the sign indicates whether
the contour moves inward or outward bbxat P,. The number of corners between two
subsequent intersection points can now be found by subtracting the absolute \sdigeof
of the first point from that of the next. The first corner which is encountered while movir
from one intersection point to the next is the corner with number equal to the absolute ve
of ssideof the former intersection point. For example, for the two subsequent intersect
points P, and Ps in Fig. 8, it follows thatssid€ P, b) = —2 andssidé Ps, b) = +3, so that
|ssidé Ps, b)| — |ssid&P,, b)| =3 — 2= 1. This means that there is one corner betwegn
and Ps, and the number of that corner is equall$sidd P,, b)| = 2. Using this strategy,
the contributions of the boundary parts of the boxes that are crossed by the contour ca
determined.

Another problem that can be encountered when determining the contribution of the sec
source is the possibility of a box lying completely inside the interior of the contour. In th
case, the whole boundary of the box contributes to the outer-ring. A way to detect th
kind of boxes is to move through the boxes from left to right, row by row. For a certa
box in a certain row, there are three possibilities: the box is intersected by the contour
thus it is not lying completely inside the contour; the box is not intersected by the cont
and it is lying completely outside the contour; the box is not intersected and it is lyil
completely inside the contour. It is easy to detect whether the box under consideratio
of the first kind or not, since it is known how many intersection points there are (if the
are intersection points, then it is a box of the first kind). It is more complicated, howev
whether in the case of no intersection points the box is of the second or the third kind
that case it is necessary to have some extra information: if the left side of the current bc
lying completely inside the contour and it is not intersected by the contour, then the curr
box is of the third kind and thus lying completely inside the contour. Note that the left si
of the current box is the right side of the previous box. When examining a box a flag is
which indicates whether the right side is completely inside the contour or not. This flag
used when considering the next box in case it is not crossed by the contour to determir
which kind (second or third) it is. A pseudo-code describing this part of the method can
found in [20].

This part of the method may appear rather complicated and time consuming at firstgla
The implementation, however, is done quite efficiently so that the total amount of CPU-ti
required for the construction of the finest level outer-rings is almost completely determir
by the calculation of the integrals along contour segments. The algorithms for finding
which part of the contour belongs to which box, and which box is lying completely insic
a contour, requires at most a few percent of the total amount of CPU-time needed for
construction of the finest level.

6. NUMERICAL EXPERIMENTS AND DISCUSSION

In this section some numerical experiments are discussed in order to demonstrate
accuracy and the speed-up of the hierarchical-element method.
The accuracy is tested on the following example.

ExAMPLE 6.1. This example concerns the evolution of amonopolar vortex into a tripol
vortex, which is a vortex consisting of an elliptic core with two satellites of opposite sic



304 VOSBEEK, CLERCX, AND MATTHEIJ

t=20 t =6 t =12

FIG. 9. The evolution of a monopolar vortex into a tripolar vortex.

[16, 18]. The initial configuration consists of three concentric, slightly elliptically disturbec
contours (aspect ratio is equal to ¥98). The outer ring has negative vorticity, while the
core (consisting of the area enclosed by the second contour) has positive vorticity (see
the paper by Vosbeek and Mattheij [22]). Due to the elliptical disturbance, the monop
deforms and becomes a tripole while the core is becoming more elliptical. The evolutiol
shown in Fig. 9. With the new method, four simulations have been performed for varic
choices of the number of integration poirs on the rings, namelK =9, 17, 25, and
33. Obviously, the higher the value &, the more accurate the results should become
During the simulations, the number of levels is automatically adapted (see Section 3)
I+ increases frony = 1 at the beginning up g =5 at later stages. In Fig. 10 the (relative)
difference in area, enclosed by the contours, relative to the conventional method, is plo
as a function of time for the three different contours. It is clear from this figure that 9
yields the largest difference. In fact, in that case, the differences are larger than the er
in the area caused by the time integration (see the paper by Vosbeek and Mattheij [22])
it can be concluded that the method is not accurate enough with this valueNfte that
the errors forlK = 33 tend to become larger than those o= 17 andK = 25. The reason
for this is not quite clear.

Itis interesting to compare the shapes of the contours of the present simulations with tf
obtained with the conventional method as used in the paper by Vosbeek and Mattheij [.
In Fig. 11a, the contours at tinte= 12 for both simulations are plotted together in the

le-02 T T T T T
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1e-06
AA y
le-08 " | T ;
I ' \
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1 12 L 1 1 K:3l3‘ L L 1 KI:3\3 1 L L K\:3I3”
& 0O 2 4 6 8 10 120 2 4 6 8 10 12 0 2 4 6 8 10 12

i t t
Contour 1 Contour 2 Contour 3

FIG. 10. Difference of the area compared to the results of the conventional method for several vduas of
a function of timet.
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FIG. 11. The shape of the tripole dt=12. In all panels, the contours of the tripole computed with the
conventional method (thick grey line) and with the HEM method (thin black line) are drawn in the same graph
the top panelsK =9 is used in the HEM method; in the bottom pani€ls= 17 is used. In the panels on the right,
an enlarged view of a part of the tripole is shown.

same graph. The contours of the conventional method are plotted with thick grey lir
whereas the contours of the new code vith- 9 are plotted with thin black lines. To make
the difference more clear, an enlarged view of a part of the tripole is given in Fig. 11
Obviously, the contours are less smooth for the dase9 than forK =17 and there are
substantial differences with the contours produced by the conventional method. Using tt
results in further calculations will yield even larger differences at later stages. These res
confirm that the results fdk =9 are not reliable.

For K = 17, however, the calculations are much better, as can be observed from t
Fig. 10 and the bottom panels of Fig. 11. For this valu&othe differences in the area
remain smaller than the errors caused by the time integration. Figure 11c shows a
both the contours obtained with the conventional method and the ones obtained by Hl
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Figure 11d shows an enlarged view of the same part of the tripole #$08. Now, there
is no visible difference in the shape of the contours and also further calculations did
reveal any; so foK =17, the method is much more reliable.

For higher values oK (K =25 andK = 33), the differences in the area are smaller
than or comparable to tHé¢ = 17 case. Although not shown here, it may be clear that th
contours again show no visible differences with the ones produced by the conventic
method.

The higher accuracy of the method for larger valueKofias a price, of course. The
higherK, the more computationally expensive the method becomes. However, the speet
is still significant as illustrated with the following example.

ExAMPLE 6.2. To test the speed-up of the new method, several computations are {
formed. For these simulations, a circular vortex patch is used with five contours. The re
of the contours are.Q, 2.0, 3.0, 4.0, and 50. The domain of the multipole method is chosen
[—6.0, 6.0] x [—6.0, 6.0]. The five contours all have the same fixed number of nodesin ea
calculation. Computations are performed for 1200, ..., 800 100Q 120Q ..., 4000,
5000, 6000 equispaced nodes per contour with number of l¢yeisl, 2,...,6 and
K =25. The conventional method was tested for the same numbers of nodes per contol
Fig. 12, the CPU-time (in seconds on one R8000 processor of a Silicon Graphics Po
Challenge) for one calculation of the velocity field is plotted as a function of the total nur
ber of nodes. Note that in this figure both the horizontal and vertical axis have logarithn
scales. The curve corresponding to the conventional method is drawn with a solid line;
curves for the HEM method are all drawn with differently dashed lines.

The curve corresponding to the conventional method is a straight line and closer inspec
reveals that this agrees with ti& N?) behaviour. Furthermore, it can be observed that th
larger the value off; is, the slower the CPU-time increases wiNh But also, the largdr;,
the higher the CPU-time is for small values®f From these two observations it follows
that the value of; that should be chosen in order to have maximum speed-up, depends
the number of nodes (as expected, see Section 3): the larger the number of nodes, the f
I+. In Fig. 13, the maximum speed-up factor is plotted as a functidd.dfhis factor was
determined by dividing the CPU-time needed by the conventional method by the CPU-ti

104
10% E

CPU (5) 10? |

10! B 2

100 bt — :
10° 104

FIG.12. The CPU-time, for calculating the velocities for a patch with 5 contours, as a function of the numb
of nodesN for several values df; (dashed lines) and the conventional method (solid line).
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FIG. 13. The speed-up factor as a function of the total number of ndtfs the most optimal choice df.

needed by the HEM, this for the most optimal choicd ofor N nodes. Obviously, the
speed-up of the HEM method is much larger for high valuebl dgpeed-up factor: 25
for 3. 10* nodes!) than for small values of (speed-up factor 5 for 5- 10° nodes). The
speed-up factor increases almost linearly with the number of nodes, which means th
I+ is chosen optimal in the computations, the method is almost of @ghr). This is a
substantial improvement compared to the conventional method and it may be clear tha
speed-up is even larger in the caseko& 17.

The previous example tests the speed-up of the method for a rather simple configure
of contours. The speed-up for more complex problems will probably be smaller since
construction of the outer-rings at the finest level is more complicated in those cases. DL
an efficient implementation of the algorithms discussed in Section 5, however, this effec
expected to be small.

ExAMPLE 6.3. A last example to illustrate the speed-up of the new method concern
rather special interaction of three initially circular monopoles. The initial configuration
the monopoles is chosen such that a so-cat@ihpseof the three vortices would occur in
case the monopoles of finite area are replaced by point vortices of the same strength:
locations [2, 3, 12-14, 17]. In the point vortex case, the trajectories of the point vortic
have the form of logarithmic spirals with a common origin. During their interaction, th
three point vortices move along the trajectories towards the origin and collapse ther
finite time.

In the paper by Vosbeedt al. [21], the point vortices are replaced by initially circular
monopoles of finite size and several numerical simulations were carried out to study
influence of, e.g., viscosity and the size of the monopoles on the interaction behaviou
the vortices. Some additional simulations can be found in [20].

In this example, the same initial configuration is chosen as in [20, 21], i.e.,

x1(0) = —4, X2(0) = —3, x3(0) = 1,
Y0 =0, 200 = 3V3.  {ys(0 = 13,
Iy =-3, =2, 3= —6.

For each of the three vortices, 16 contours (and thus 16 discrete levels of vorticity) are L
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FIG. 14. The evolution of the three, unequally sized, circular monopoles.

to mimic the continuous vorticity distribution of a so-callBéssel vortexThe vorticity
distribution of a Bessel vortex is given by

IA

R,

kI
KO gokr), 1
() = { 2rRAKR) -0 .

0, r

v

wherer is the radial distance to the centre of the vortBxts radius, and” its strength
or circulation.Jy and J; are Bessel functions of the first kind aké&~ 2.4048 is the first
zero of Jp. The radii of the three vortices are chosen differently and such that the vortic
have the required strength, but the maximum of vorticity is the same for all three v
tices. As a consequence, the three discretised vortices have the same 16 discrete lev
vorticity. The evolution of the vortices is shown in Fig. 14. In the case of a similar confi
uration of three point vortices, a collapse into one single point vortex would take place
t =25.3952.

Here, the evolution of the three vortices has been calculated (on the same compute
in the previous example) both using the original method and the HEM (With: 17).
During the calculation, the CPU-time necessary to do the velocity calculations (four tirr
per time step) has been monitored. In Fig. 15, the evolution of the CPU-time (in secon
during the two calculations is plotted. The time on the horizontal axis corresponds to
time in the evolution of the vortices as given in Fig. 14. The number of levels in the ca
of the HEM method i$; = 5 in the first part of the calculation (untik: 16) and 1 =6 in
last part. The total number of nodes increases from 4686 initially up to 17,895 25.
Itis clear from this graph that the computation time increases far less dramatically in-
HEM case than with the original method. This results in a total computation time for tl
HEM method (89,604 s) which is approximately 6.5 times smaller than the original meth
(579,512 s).
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FIG. 15. The evolution of the CPU-time (in seconds) needed for the four velocity calculations per time st
as a function of timé. For the original method this is shown with a solid line and for the HEM with a dashed line

7. DISCUSSION AND CONCLUSIONS

In this paper, a method is presented to accelerate contour dynamics simulations.
based on the hierarchical-element method developed by Anderson [1] which turned ot
be very suitable for this purpose.

The hierarchical-element method is very similar to the fast multipole method by Greeng
and Rokhlin[11], which is commonly used for the calculations of many particle interactior
However, instead of multipole expansions, this method makes use of Poisson integrals
advantage of this is that the method is not only applicable to problems concerning part
interactions, but also to problems with a different kind of “charge distribution,” like piece
wise uniform distributions of vorticity as in the case of the contour dynamics method.
those more general cases, however, the method by Anderson has to be adapted in
sense. For application to contour dynamics, for example, it is necessary to derive the ar
priate Poisson integrals. Furthermore, the construction of the finest level approximation
the Poisson integrals is different and slightly more complex than in the particle case. N
ertheless, the numerical examples presented in this paper show that the resulting me
turns out to be very accurate, while the speed-up is significant.

The development of this acceleration method makes it possible to handle very comj
flow problems. For example, the behaviour of vortices in the presence of non-unifo
background vorticity (e.g., on thg-plane or they-plane, being approximations of the
rotating earth at midlatitudes and poles, respectively) can be studied now using this met
Inthose cases, contours are also present outside the vortices [20], in contrast to the exar
shown in this paper where only contours were present inside the vortices. As a consequie
the total number of nodes can become much larger than in the examples shown here. Wit
accelerating contour dynamics, carrying out such simulations would be virtually impossit

Another advantage of the hierarchical-element method as presented here is that
method is quite suitable for parallelisation. The computations of the outer-rings and inr
rings at a certain level are independent from each other and can thus be carried out si
taneously. This way, even higher speed-up rates would be possible. A similar effect cc
be achieved by adapting the size of the domain during an evolution in such a way the
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each time step, the domain used in the HEM, is the smallest domain possible. This v
the number of boxes with only few nodes (which are relatively expensive to compute)
minimised. Another way to improve efficiency could be by making use of non-unifori
refinements, i.e., refine locally where the density of nodes is high. Finally, choosing a re
angular computational domain instead of a square domain (like in the examples prese
here) could also lead to higher speed-up values in some cases [1].

The hierarchical-element method is used in this paper to speed-up simulations of f
problems in an infinite domain (though the computational domain is bounded, of cours
but it would also be possible to incorporate boundary conditions according to Greeng
and Rokhlin [11]. Furthermore, a generalisation of the method to three dimensions to st
for example, rotating, stratified flows, is possible as well (see, e.g., Anderson [1]). T
would make the contour dynamics method even more generally applicable.
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